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Abstract
A general theoretical approach to polarized neutron chiral scattering is
described. It is shown that using polarized neutrons one can study the
projection of the spin chirality on the axial-vector interactions and investigate
critical chiral fluctuations. Applications of this method to the triangular lattice
antiferromagnets, helimagnets and spin glasses are discussed.

1. Introduction

The important role of spin chirality (SC) was recognized during theoretical studies of frustrated
magnets. It was shown that the SC is a relevant critical variable for triangular lattice
antiferromagnets (TLA), along with the sublattice magnetization [1]. Numerical studies reveal
the possibility of a chiral glass state in spin glasses (see [2] and references therein). The SC
should be important for other frustrated magnets. Hence, its experimental investigation is an
urgent problem.

The SC is determined as a vector product of the lattice spins: C12 = [S1 × S2] and the
chiral susceptibility is described by a four-spin correlation function. Its direct observation is a
difficult experimental problem. Polarized neutrons allow one to partly solve it. If the system
as a whole possesses some axial vector (magnetization, Dzyaloshinskii vector, etc), the tensor
of the magnetic susceptibility acquires an antisymmetric part, which is a projection of the SC
onto the axial-vector interaction. As a result the scattering cross section becomes dependent
on the initial neutron polarization P0 [3–5]. This provides the possibility to study SC using
polarized neutrons. By this method new chiral exponents were measured for the first time in
the TLA CsMnBr3, CsNiCl3 and helimagnetic Ho [6–8].

In this paper we outline the theoretical basis of this method and its application to the TLA
and helimagnets. We discuss also the possibility of using it to investigate spin glasses.

2. General properties

The antisymmetric part of the susceptibility tensor is connected to an axial vector: χ A
αβ =

−iεαβγ Cγ , where ‘i’ is introduced for convenience only and the vector C is given by [8]

C(Q, ω) = 1
2

∫ ∞

0
dt eiωt 〈S−Q(t) × SQ(0) − SQ(0) × S−Q(t)〉, (1)
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Figure 1. The energy dependence of the DC in classical ωc � T (a) and quantum (b) cases where
ωc is the characteristic energy of fluctuations.

H D
k k 

0
Q                        Q               Q Q

a) b) 

Figure 2. A diagrammatic representation of the polarized neutron chiral scattering in the cases of
magnetic field (a) and Dzyaloshinskii–Moriya interaction (b).

where S−Q is the Fourier component of the spin density. For the chiral part of the cross section
we have [3–5]

σch(Q, ω) = 2r2 F2(Q)(kf/ki)
(P0 Q̂)(Q̂ Im C(Q, ω))

1 − e−ω/r
, (2)

where r = 5.4 × 10−13 cm, F(Q) is the magnetic form factor and Q̂ = Q/Q. The general
properties of Im C(Q, ω) follow from the conditions of detailed balance and symmetry under
time reflection. In centrosymmetric systems, Im C exists in a magnetic field or in spontaneously
magnetized ferromagnets (dynamical chirality (DC)). It is an odd function of the sample
magnetization and an even function of ω. Due to the Bose factor in equation (1), σch changes
sign with ω and one has to distinguish two cases: classical (ωc � T ) and quantum (ωc � T ),
where ωc is the characteristic energy of fluctuations (see figure 1). In the former case, σch is
an odd function of ω and therefore the ω-integrated static SC is zero. This ω oddness was
confirmed experimentally [6, 7].

In crystals with the Dzyaloshinskii–Moriya interaction (DMI), σch is an odd function of
Q but does not change sign with ω. This difference in the ω behaviour of σch is a result of the
difference in t parity of H and the Dzyaloshinskii vector D.

For weak axial-vector interaction the chiral scattering is connected with three- and four-
spin fluctuations in the H and D cases respectively (see figure 2). Evaluation of Im C is a very
complex problem except for the simplest case of ferromagnets below Tc.

3. TLA and helimagnets

According to [1] the TLA and helimagnets belong to the same chiral universality classes of
the second-order phase transition. Near TN an expression for Im C can be obtained using
scaling theory as demonstrated for ferromagnets [3, 5]. A similar approach is appropriate
for TLA and helimagnets [5, 8]. According to the scaling theory, any relevant variable A
has the special anomalous dimension �A which determines the average value of A below the
transition: 〈A〉 = (−τ )βA , where τ = (T − TN)/TN, βA = �Aν and ν is the correlation length
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exponent. The generalized susceptibility of two variables has the form

χAB(Q, ω) = 1

TNτ ν(3−�A−�B )
F

(
Qa

τ ν
, ω

)
, (3)

where a is of order of the lattice spacing [5, 6] and F depends on A and B . The explicit form
of this function is inessential for us (see below). In a weak field, DC describes the correlation
between the SC with dimension �c and the magnetization whose dimension is zero and we
get

C(Q, ω) = gµB H

TNτϕc
φ

(
Qa

τ ν
, ω

)
, (4)

where ϕc = (3 − �c)ν. According to (3), the exponent of the chiral susceptibility
γc = ν(3 − 2�c) and ϕc = βc + γc. If Q is at the magnetic Bragg point, the τ dependence of
Im C is determined by the factor τ−ϕc and one can measure this exponent [7, 8]. The exponent
βc could be measured using polarized neutrons too [5, 10, 11].

Some additional improvements of equation (4) allow us to correct experimental data and
obtain deeper insight into the structure of Im C. According to figure 2(a), DC describes a
process where the spin fluctuation scatters on the uniform magnetization and we can write

C(Q, ω) =
[
χ(q, ω)

χ(0, 0)

]2 1

τϕc
f (q, ω)

gµB H

TN
, (5)

where χ(q, ω) is the conventional susceptibility and q is the distance from the magnetic
Bragg point. As the magnetization is not a relevant variable, one should assume nonsingular
behaviour of the factor f . In this case, due to the ω evenness of Im C , one should assume
f (q, ω) = (ω/TN) f0. Assuming also the experimentally established form [12]

χ(q, ω) = Z

q2 + κ2

iq

ω + iq
, (6)

where κ ∼ τ−ν is the inverse correlation length and Z is a constant, we get [5]

σch ∼ gµB H

T 2
Nτϕc

(
κ2

κ2 + q2

)2 ω3
q

(2
q + ω2)2

. (7)

At q = 0 the second factor is unity. However, with decreasing τ , the q resolution becomes
larger than κ and one has to integrate over q up to qmax � κ . As a result we get χch ∼ τϕc−2ν [5].
This explains the crossover in the τ dependence of σch observed in [6, 7] and corrects the results
of those papers [13].

4. Spin glasses

For spin glasses, equations (4) and (5) are applicable above Tg for the small angle scattering.
The increase of σch at τ = (T − Tg)/Tg → 0 would be evidence that the SC is a relevant
variable.

Below Tg the sample magnetization slowly relaxes after the field is switched off. Then
the chiral scattering should be observed both in field cooled (FC) and zero-field cooled (ZFC)
experiments. Corresponding studies would provide additional information about the spin glass
state.

In spin glasses characteristic energies are distributed according to the 1/ω law [14] over
the wide range below some cut-off energy �c. This means that below Tg in a very crude
approximation we have

σch(Q, ω) =
∫ ∞

q

d


σch(Q, ω, ). (8)
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Figure 3. The geometry of the chiral scattering in the inclined magnetic field.

Assuming that below Tg the ω dependence of σch(Q, ω, ) is the same as in equation (7),
we obtain

σch(Q, ω) = σch(Q)




ω

q
, |ω| � q ;

π

4
sgn ω, q � |ω| � min(�0, T ).

(9)

We see that there is a wide ω range where σch(Q, ω) depends on sgn ω only. Really, one can
expect σch ∼ |ω|a sgn ω with a � 1.

The prefactor σch has to have a different form in the critical region and at low T . In the
former case we can write

σch ∼ (−τ )νc�c
gBµH P0 sgn ω

T 2
g [1 + (Qa/τ ν)2]2

, (10)

where according to [2] we introduce two correlation range exponents ν and νc. In the low
temperature region where both correlation lengths have to be of the order of a, we have
σch(Q) ∼ gBµH P0/T 2

g and it is Q independent for Qa � 1.
In spin glasses the chiral scattering should be weak, and investigation of the ω dependence

of σch is a difficult experimental problem. At the same time the ω-integrated chiral scattering
in a classical case is zero (see above). So one can use the so-called inclined geometry applied
for small angle critical scattering in ferromagnets [3, 5, 15]. In this case the field is directed at
an angle 90◦ −ϕ to the neutron beam (see figure 3). In spin glasses, C = ĥC where ĥ = H/H
and P0 = P0ĥ to avoid the Larmor precession. As a result the factor P0(ĥ Q̂)2 appears in
equation (2). For the small angle scattering it has a term P0(2Eϑω sin 2ϕ)[ω2 + (2Eϑ)2]−1/2;
the oddness of (T Im C)/ω is compensated by this term and the ω-integrated chiral scattering
has the form

σch(ϑ) = (2r2T P0 sin 2ϕ)

∫
dω(2Eϑ) Im C(Q, ω)

(2Eϑ)2 + ω2
, (11)

where Q = k(ϑ2 + ω2/4E2)1/2. We see that now instead of ω oddness we get ϑ oddness of
σch(ϑ). This integrated chirality could be easily extracted from the total scattering intensity,
as demonstrated in [15] for the critical scattering in ferromagnets.

At small T in the range where σch(ω) ∼ sgn ω, from equation (11) we get

σch(ϑ) ∼ 2Eϑ ln
�0

2Eϑ
; 2Eϑ > kϑ , T . (12)

Here we have taken into account the Q independence of σch(Q). Investigation of other
limiting cases is beyond the scope of this paper and could be done easily in connection with
corresponding experimental studies. However, one has to have in mind that the chiral scattering
increases with T .
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5. Conclusions

We have described a general theoretical approach to the chiral scattering of polarized
neutrons and demonstrated its efficiency for investigation of the spin chirality in the TLA
and helimagnets. We discuss also a possible application of the method for investigation of the
SC in spin glasses. Obviously there could be many applications to other frustrated magnetic
systems.
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